Aprospect.ru

Агентство недвижимости
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Легкие Бетоны

Легкие Бетоны

Евразийский совет по стандартизации, метрологии и сертификации (ЕАСС) представляет собой региональное объединение национальных органов по стандартизации государств, входящих в Содружество Независимых Государств. В дальнейшем возможно вступление в ЕАСС национальных органов по стандартизации других государств.

При ЕАСС действует Межгосударственная научно-техническая комиссия по стандартизации, техническому нормированию и сертификации в области строительства (МНТКС), которой предоставлено право принятия межгосударственных стандартов в области строительства.

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и МСН 1.01-01-96 «Система межгосударственных нормативных документов в строительстве. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН ОАО «НИИЦЕМЕНТ», ООО Фирма «ЦЕМИСКОН»

2 ВНЕСЕН Госстроем России

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) 14 мая 2003 г.

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование органа государственного управления строительством

Госстрой Азербайджанской Республики

Министерство градостроительства Республики Армения

Казстройкомитет Республики Казахстан

Министерство экологии, строительства и развития территорий Республики Молдова

Комархстрой Республики Таджикистан

Госархитектстрой Республики Узбекистан

4 ВВЕДЕН ВПЕРВЫЕ

5 ВВЕДЕН В ДЕЙСТВИЕ с 1 сентября 2004 г. в качестве государственного стандарта Российской Федерации постановлением Госстроя России от 21 июня 2003 г. № 93

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных (государственных) стандартов, издаваемых в этих государствах.

Информация об изменениях к настоящему стандарту публикуется в указателе (каталоге) «Межгосударственные стандарты», а текст изменений — в информационных указателях «Межгосударственные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Межгосударственные стандарты».

Введение

Стандартами ряда европейских стран до сих пор устанавливалась различная классификация цементов по вещественному составу, прочности, скорости твердения и регламентировались существенно различающиеся технические требования к ним, что затрудняло сопоставление качества цементов, выпускаемых по данным стандартам. В связи с этим Европейским комитетом по стандартизации (CEN) принят стандарт EN 197-1 [1], устанавливающий единые для всех стран ЕС классификацию, технические требования и методы установления соответствия качества цементов требованиям стандарта. Требования EN 197-1 в части классификации и критериев соответствия учтены в ГОСТ 30515.

Однако в настоящее время в странах СНГ классификация цементов по ГОСТ 30515 применяется ограниченно и действующая нормативная база строительства основана на характеристиках цемента, установленных ГОСТ 10178 [2]. Эти характеристики существенно отличаются от установленных EN 197-1, что затрудняет осуществление научно-технического и экономического сотрудничества с европейскими странами.

Настоящий стандарт гармонизирован с EN 197-1 и содержит требования к двенадцати наиболее приемлемым для применения в условиях строительства в странах СНГ видам общестроительных цементов из двадцати семи, приведенных в EN 197-1.

Основные отличия настоящего стандарта от действующего ГОСТ 10178 сводятся к следующему:

— вместо марок введены классы прочности на сжатие, аналогичные установленным EN 197-1. Значения классов прочности имеют вероятностный характер и установлены с доверительной вероятностью 95 %;

— для цементов всех классов прочности, кроме требований к прочности в возрасте 28 сут, дополнительно установлены нормативы по прочности в возрасте двух суток, за исключением классов 22,5Н и 32,5Н, а для цементов классов 22,5Н и 32,5Н — в возрасте 7 сут;

— для всех классов прочности, кроме класса 22,5, введено разделение цементов по скорости твердения на нормальнотвердеющие и быстротвердеющие, что позволит минимизировать расход цемента в строительстве за счет его оптимального подбора по скорости твердения.

Стандарт предусматривает испытания цемента по ГОСТ 30744 с использованием полифракционного песка, который гармонизирован с европейскими стандартами EN 196-1 [3], EN 196-3 [4], EN 196-6 [5].

Использование стандартов, устанавливающих технические требования к цементам и методы их испытаний, гармонизированных с европейскими стандартами, позволяет получать адекватную оценку качества цементов, выпускаемых в странах СНГ и странах ЕС.

Настоящий стандарт не отменяет ГОСТ 10178, который можно применять во всех случаях, когда это технически и экономически целесообразно.

Настоящий стандарт действует параллельно с ГОСТ 10178 и применяется в случаях, когда заключенные контракты или другие согласованные условия предусматривают применение цементов с характеристиками, гармонизированными с требованиями EN 197-1. Вместе с тем настоящий стандарт является перспективным для разработки новой нормативной документации в строительстве, базирующейся на характеристиках цементов, гармонизированных с требованиями EN 197-1.

1 Область применения

Настоящий стандарт распространяется на цементы общестроительные (далее — цементы), изготавливаемые на основе портландцементного клинкера, и устанавливает требования к цементам и компонентам вещественного состава этих цементов.

Настоящий стандарт не распространяется на цементы, к которым предъявляются специальные требования и которые изготавливаются по соответствующей нормативной документации.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:

ГОСТ 310.3—76 Цементы. Методы определения нормальной густоты, сроков схватывания и равномерности изменения объема

Читайте так же:
Цементные растворы с добавлением спиртов

ГОСТ 3476—74 Шлаки доменные и электротермофосфорные гранулированные для производства цементов

ГОСТ 4013—82 Камень гипсовый и гипсоангидритовый для производства вяжущих материалов. Технические условия

ГОСТ 5382—91 Цементы и материалы цементного производства. Методы химического анализа

ГОСТ 25094—94 Добавки активные минеральные для цементов. Методы испытаний

ГОСТ 30108—94 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов

ГОСТ 30515—97 Цементы. Общие технические условия

ГОСТ 30744—2001 Цементы. Методы испытаний с использованием полифракционного песка

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов на территории государства по соответствующему указателю стандартов, составленному на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 30515.

4 Классификация

4.1 Классификация цементов — по ГОСТ 30515 и настоящему стандарту.

4.2 По вещественному составу, приведенному в таблице 1, цементы подразделяют на пять типов:

— ЦЕМ I — портландцемент;

— ЦЕМ II — портландцемент с минеральными добавками;

— ЦЕМ III — шлакопортландцемент;

— ЦЕМ IV — пуццолановый цемент;

— ЦЕМ V — композиционный цемент.

Примечание — Цемент типа ЦЕМ I не содержит минеральных добавок в качестве основного компонента.

4.3 По содержанию портландцементного клинкера и добавок цементы типов ЦЕМ II—ЦЕМ V подразделяют на подтипы А и В.

4.4 По прочности на сжатие в возрасте 28 сут цементы подразделяют на классы: 22,5; 32,5; 42,5; 52,5.

4.5 По прочности на сжатие в возрасте 2 (7) сут (скорости твердения) каждый класс цементов, кроме класса 22,5, подразделяют на два подкласса: Н (нормальнотвердеющий) и Б (быстротвердеющий) в соответствии с таблицей 2.

Сульфатостойкий портландцемент: ГОСТ, состав, применение

Некоторые полагают, что железобетонные и бетонные конструкции являются самыми надежными. Но это убеждение ошибочно. Такие конструкции подвергаются разрушениям и повреждениям при воздействии определенных факторов. На это могут повлиять морозы, грунтовые воды, деформация грунта, дожди и химические вещества. Спасением в этой ситуации выступает сульфатостойкий цемент. Он популярен в тех странах, где погода диктует свои законы строителям.

Приготовление

цемент гост

Эта разновидность цемента получается из дробленого клинкера, который смешивается с кальциевым и силикатным алюминатом. Особое внимание в этом вопросе уделяется дозировке. Алюминат, например, не должен содержаться в объеме больше 5 %, что касается силиката, то его объем составляет 50 %. Такое соотношение не является случайным. В природе есть множество сульфатов, которые при контакте с трехкальциевым гидроалюминатом становятся причиной сульфатной коррозии. Исходное сырье при этом содержит минимальное количество железа.

Применение

сульфатная агрессия

Сульфатостойкий цемент используется при бетонировании подземных и подводных массивов. Он обладает уникальными свойствами, поэтому проявляет устойчивость к внешним химическим и природным факторам. Этот цемент обладает иммунитетом к агрессивным химическим веществам, которые незаменимы в строительстве.

В тех условиях, где обычные строительные материалы не способны создать крепкого сооружения, помогает описываемый цемент. Он обладает малой степенью затвердевания, что и отличает его от обычного цемента. Плотность является основным фактором, который определяет стойкость выполненной работы.

Государственные стандарты. Разновидности. Состав

бетонные конструкции

Сульфатостойкий портландцемент может иметь разный состав и бывает:

  • шлакопортландцементом;
  • с минеральными добавками;
  • пуццолановым портландцементом.

Этот строительный материал проявляет устойчивость к факторам химического и природного происхождения. В составе имеются компоненты, которые позволяют получить постройку, не подвергающуюся разрушениям из-за переменчивой температуры и влаги.

При выборе сульфатостойкого портландцемента нужно ознакомиться с составом, ведь для определенной почвы необходим определенный материал. Описываемый создается на основе клинкера, силиката и кальциевого алюмината. Широко используют его при строительстве гидротехнических сооружений. Такие цементы изготавливаются по ГОСТ 22266-2013.

Характеристики ССПЦ 400-Д0

сульфатостойкий портландцемент

Сульфатостойкий цемент ССПЦ 400 ДО представляет собой разновидность портландцемента. Он отличается устойчивостью к сульфатным водам. Даже обычные подземные воды имеют в составе большое количество сульфатов. Они способствуют разрушению бетона. Для защиты конструкций из бетона от сульфатной агрессии применяется ССПЦ.

Цемент нашел широкое распространение при строительстве фундаментов, опор мостов при высоком уровне подземных вод. Наряду с определенными преимуществами, этот вид портландцемента обладает всеми основными характеристиками ПЦ 400-Д0. Марка по прочности при сжатии упомянута в маркировке и составляют 400 на 28-е сутки. Скорость твердения — нормально твердеющий. Изготавливается этот материал по ГОСТ 22266-94. Прочность на сжатие на третьи сутки не нормируется. В возрасте 28 суток прочность на сжатие составляет 39,2 МПа. Предел прочности при изгибе на 28-е сутки составляет 5,4 МПа. Начало схватывание происходит на 45-ой минуте, не ранее. Минеральных добавок в этом цементе нет.

Добавки для цемента

маркировка цемента расшифровка

Описываемый продукт получается методом измельчения клинкера нормированного минералогического состава и гипса. В продаже можно встретить портландцемент с минеральными добавками в виде электротермофосфатного шлака и гранулированного доменного шлака. Эти вещества добавляют в объеме 20 % от общей массы. Активные добавки могут содержаться в пределах от 5 до 10 %. Такой цемент, ГОСТ которого был упомянут выше, имеет сравнительно невысокий глиноземный модуль, а также коэффициент насыщения.

Читайте так же:
Почему твердеет цементный раствор

Для изготовления используется клинкер, в котором не больше 5 % СзА и не больше 50 % C3S. Общая сумма C3A и C4AF не должна оказаться больше 22 %. Добавками для цемента выступают С3А и C3S. В связи с этим, материал имеет пониженное тепловыделение, так как упомянутые вещества содержатся в умеренном количестве. В продаже можно встретить сульфатостойкую разновидность с маркировкой 400. Если имеются минеральные добавки, то марка может быть 500. Предел прочности при сжатии на 28-е сутки составляет 40 МПа, если же имеются минеральные добавки, то этот показатель повышается до 50 МПа.

Используется этот материал для создания бетонных конструкций, гидротехнических сооружений, подверженных воздействию сульфатосодержащих вод.

Расшифровка маркировки

цемент сульфатостойкий сспц 400 до

Строительные цементы обладают своей маркировкой, утвержденной и описанной в СНиЛС и ГОСТах. Изготавливаться материал может и по другим нормативным документам. Если среди первых буквенных обозначений вы увидели ПЦ, то перед вами портландцемент. Шлакопортландцемент обозначается аббревиатурой ШПЦ . Понять, что перед вами сульфатостойкий портландцемент, вы сможете по буквам СПЦ или ССПЦ.

Когда присутствуют в материале минеральные добавки, к аббревиатуре добавляется буква Д, тогда маркировка выглядит следующим образом: СПЦД. Сульфатостойкий шлакопортландцемент обозначается маркировкой ССШПЦ. Если перед вами пуццолановый и напрягающий цементы, вы увидите следующие буквы: ППЦ и НЦ соответственно. Белый портландцемент и водонепроницаемый расширяющийся цементы обозначаются буквами ПЦБ и ВРЦ.

Маркировка цемента и расшифровка важна для потребителя. Так он сможет приобрести необходимый ему товар. После первых букв будут указаны цифры, которые в маркировке выглядят следующим образом: ПЦ-500. Это говорит о том, что перед вами цемент марки 500. За маркировкой могут идти другие цифры и буквы. Например, если в цементе имеется максимальное содержание добавок, то вы увидите: Д0, Д5, Д20. Это соответствует процентному соотношению 0,5 или 20 %.

Быстротвердеющий цемент обозначается буквой Б. Пластифицирующий цемент — это ПЛ, гидрофобизированный цемент — ГФ. Материал с нормированным составом клинкера — Н. В конце маркировки указывается нормативный документ. Это могут быть технические условия или государственные стандарты, на основании которых изготавливается материал.

Пластифицированный и гидрофобный портландцемент

добавки для цемента

Пластифицированный портландцемент отличается от обычного способностью придавать бетонам и растворам повышенную подвижность. Этого эффекта удается достичь за счет введения клинкера в объеме 0,25 %. Гидрофобизирующей добавкой выступает сульфидно-дрожжевая бражка. Она и повышает пластичность цементного теста. Бетонные конструкции с добавлением такого цемента получают пластифицирующий эффект, который позволяет уменьшить водоцементное отношение и повысить плотность, а также водонепроницаемость конструкции.

Гидрофобный портландцемент изготавливается при введении клинкера в объеме 0,1 %, асидола, а также синтетических жирных кислот. В составе могут быть еще и гидрофобизирующие добавки. Эти вещества способны понизить гигроскопичность, поэтому цемент отличается от обычного тем, что при хранении во влажных условиях не портится. Он не комкуется и сохраняет свою активность. В связи с этим сульфатостойкий портландцемент гидрофобного типа рекомендуется использовать в областях с высокой влажностью. Главное вещество там сохраняется в отвердевших материалах и повышает их водонепроницаемость, увеличивая сопротивляемость к внешним агрессивным условиям.

Сульфатостойкий бетон

На сегодняшний день такой бетон можно получить двумя способами. Первый заключается в добавлении цемента со специальными модифицирующими веществами. 2-ая технология выражена в приготовлении раствора с использованием сульфатостойкого цемента. Данная методика более предпочтительна и надежна. Ведь описываемый выше цемент, ГОСТ которого был упомянут в статье, способен защитить материал на всех стадиях жизни конструкции.

Бетон, изготовленный по первой технологии, тоже будет защищен от негативных факторов, но подобную защиту можно сравнить с обработкой обуви водоотталкивающим составом. Что касается сульфатостойкого раствора, то он является аналогом резиновых сапог. Разница здесь существенна. Помимо прочего, существует еще градация по прочности сжатия на 28-е сутки.

В заключение

Сульфатостойкий портландцемент — это разновидность обычного портландцемента. Он отличается устойчивостью к сульфатным водам. Ведь даже обычные грунтовые воды имеют в составе огромное количество сульфатов. Они в конечном итоге и способствуют разрушению бетона.

Для того чтобы эффективно защитить бетонные конструкции от таких воздействий, используется цемент специального назначения. Сегодня он нашел свое широкое распространение при строительстве фундаментов и опор мостов, которые эксплуатируются при высоком уровне грунтовых вод.

Одним из его дополнительных преимуществ можно считать то, что его хранение допустимо в более сложных условиях. Это касается, например, повышенной влажности, при которой не происходит комкования и слеживания со временем.

ГОСТ 5382-91, часть 2

2.4. При эксплуатации установок с ионизирующими источниками излучения (рентгеноспектральная аппаратура) следует руководствоваться требованиями норм радиационной безопасности НРБ-76/87 и основными санитарными правилами ОСП-72/87.

Читайте так же:
Цемент 50 кг m400

2.5. При работе с горючими и взрывоопасными веществами должны соблюдаться требования безопасности в соответствии с ГОСТ 12.1.010.

2.6. При работе с газовыми установками руководствуются ГОСТ 12.2.008 и правилами безопасности в газовом хозяйстве, утвержденными Госгортехнадзором СССР.

2.7. При работе с вредными и ядовитыми веществами необходимо применять средства защиты по ГОСТ 12.4.004, индивидуальные средства защиты (респираторы по ГОСТ 12.4.011 или ГОСТ 12.4.028, резиновые перчатки по ГОСТ 12.4.103, одежду по ГОСТ 27654 и ГОСТ 29058).

3. Определение влаги

3.1. Ошибка повторяемости и расхождения между результатами параллельных определений не должны превышать соответственно ±0,07 и 0,10% при массовой доле влаги до 1,0%; ±0,10 и 0,15% при более высокой массовой доле влаги.

3.2. Гравиметрический метод

3.2.1. Средства анализа

Весы лабораторные общего назначения.

3.2.2. Проведение анализа

Навеску пробы массой 1 г помещают в предварительно высушенный до постоянной массы бюкс, ставят в сушильный шкаф нагретый до температуры (110±5)°С, сушат 1,5-2 ч. Вынимают из сушильного шкафа, охлаждают в эксикаторе и взвешивают. Перед взвешиванием крышку бюкса приоткрывают и быстро закрывают. Высушивание, охлаждение и взвешивание повторяют до тех пор, пока разница между двумя последующими взвешиваниями будет не более 0,0004 г. Если при повторном высушивании масса навески увеличится, то для расчета применяют массу, предшествующую ее увеличению.

Пробу гипса и гипсоглиноземистого цемента сушат при температуре 50-60 град.С.

3.2.3. Обработка результатов

Массовую долю влаги в процентах вычисляют по формуле

масса навески с бюксом до сушки, г;

масса навески с бюксом после сушки, г;

масса навески пробы, г.

4. Определение потери массы при прокаливании

4.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать соответственно ±0,07 и 0,10% при потере массы при прокаливании до 1% (но не менее 0,5%); ±0,15 и 0,20% при более высокой потере массы при прокаливании (но не более 45%).

4.2.1. Средства анализа

Весы лабораторные общего назначения.

4.2.2. Проведение анализа

Навеску пробы массой 1 г, высушенную при температуре 105 — 115 град.С, помещают в предварительно прокаленный и взвешенный платиновый или фарфоровый тигель и нагревают в муфельной печи, где выдерживают 30 мин при температуре 950-1000 град.С, затем охлаждают в эксикаторе и взвешивают. Прокаливание повторяют при той же температуре до получения постоянной массы.

При определении потери массы при прокаливании шлакопортландцемента, шлака, золы навеску анализируемой пробы выдерживают в муфельной печи при температуре 950-1000 град.С в течение 1-2 мин и прокаливание повторяют до получения минимального значения массы.

В материалах, содержащих органические соединения, а также кристаллизационную воду, определение потери массы при прокаливании начинают при температуре 400-500°С, прокаливая пробу до постоянной массы.

4.2.3. Обработка результатов

Потерю массы при прокаливании в процентах вычисляют по формуле

масса навески с тиглем до прокаливания, г;

масса навески с тиглем после прокаливания, г;

масса навески, г.

5. Определение нерастворимого остатка

5.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать соответственно ±0,05 и 0,06%.

5.2. Гравиметрический метод

5.2.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118 и раствор 1:9.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204.

Натрий углекислый по ГОСТ 83, раствор массовой концентрацией 50 г/куб.дм.

Гидроксид натрия по ГОСТ 4328, раствор массовой концентрацией 10 г/куб.дм.

Аммоний азотнокислый по ГОСТ 22867, раствор массовой концентрацией 20 г/куб.дм.

Аммоний хлористый по ГОСТ 3773, раствор массовой концентрацией 20 г/куб.дм.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Индикатор метиловый красный, спиртовый раствор массовой концентрацией 2 г/куб.дм, готовят по ГОСТ 4919.2.

Серебро азотнокислое по ГОСТ 1277, раствор массовой концентрацией 10 г/куб.дм.

Кислота азотная по ГОСТ 4461.

5.2.2. Проведение анализа

Навеску клинкера или цемента массой 1 г помещают в стакан вместимостью 150 куб.см, прибавляют при помешивании 25 куб.см воды и 5 куб.см соляной кислоты. Навеску тщательно растирают плоским концом стеклянной палочки и доводят объем раствора водой до 50 куб.см, накрывают стакан часовым стеклом, помещают на кипящую водяную баню и выдерживают на ней 15 мин. Затем жидкость фильтруют через фильтр "белая лента" и промывают остаток горячей водой температурой 60-70 град.С до исчезновения реакций на ион хлора (проба раствором азотнокислого серебра, подкисленного азотной кислотой). Остаток вместе с фильтром переносят в стакан, в котором проводилось разложение навески, и приливают при помешивании 30 куб.см раствора углекислого натрия, нагретого до температуры 80-90 град.С.

Стакан накрывают стеклом и нагревают на электрической плитке на асбестовой сетке 15 мин при температуре, близкой к кипению. Жидкость фильтруют через двойной фильтр "белая лента", остаток промывают 5-6 раз горячей водой температурой 60-70 град.С, затем смачивают 10-12 каплями раствора соляной кислоты и снова промывают до исчезновения реакции на ион хлора.

Читайте так же:
Пропорция цемента для бетонного пола

Остаток после отделения солянокислого фильтрата может быть обработан вместо углекислого натрия 100 куб.см горячего раствора гидроксида натрия при температуре близкой к точке кипения в течение 15 мин. Затем раствор нейтрализуют соляной кислотой по индикатору метиловому красному и добавляют 4-5 капель той же кислоты. Фильтруют и промывают остаток 10-12 раз горячим раствором азотнокислого или хлористого аммония.

После этого остаток с фильтром помещают в платиновый или фарфоровый тигель и прокаливают в муфельной печи при температуре 950-1000 град.С до постоянной массы.

1. При массовой доле в цементе нерастворимого остатка выше 0,4%, а также при анализе барийсодержащего портландцемента необходимо проверить его на чистоту отгонкой с фтористоводородной кислотой по п. 6.3.3. За значение нерастворимого остатка при этом берется массовая доля отогнанного оксида кремния. Если проверка на чистоту нерастворимого остатка не производилась, то полученное значение умножают на коэффициент 0,7.

2. Солянокислый фильтрат после отделения нерастворимого остатка может быть использован для определения в нем оксида серы (VI) по разд. 11.

5.2.3. Обработка результатов

Массовую долю нерастворимого остатка в процентах вычисляют по формуле

масса пустого тигля, г;

масса тигля с прокаленным осадком, г;

масса навески пробы, г.

6. Определение оксида кремния

6.1. Ошибка повторяемости и расхождение между результатами параллельных определений не должны превышать значений, указанных в табл. 1.

Массовая доля оксида кремния

6.2. Гравиметрический метод при массовой доле оксида кремния более 90%

Метод основан на разложении навески пробы фтористоводородной кислотой и гравиметрическом определении оксида кремния по разности масс навески пробы и остатка после удаления фторида кремния.

6.2.1. Средства анализа

Весы лабораторные общего назначения.

Кислота азотная по ГОСТ 4461.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204.

Кислота соляная по ГОСТ 3118.

Смесь для сплавления по п 6.4.1.

6.2.2. Проведение анализа

Навеску пробы массой 0,5 г помещают в платиновый тигель, доведенный до постоянной массы, смачивают водой, прибавляют 10 капель серной кислоты, 10 куб.см фтористоводородной кислоты и помещают на песчаную баню или электроплитку со слабым нагревом. Выпаривают содержимое тигля до влажных солей, затем добавляют еще 5 куб.см фтористоводородной кислоты и выпаривают досуха до полного удаления паров серной кислоты. Затем остаток прокаливают в муфельной печи при температуре 900-1000 град.С в течение 10-15 мин, охлаждают в эксикаторе и взвешивают. Прокаливание и взвешивание повторяют до постоянной массы.

Остаток в тигле используют при систематическом анализе для определения оксидов кальция, магния, железа и алюминия. Для этого остаток сплавляют по п 6.4.2.1 со смесью для сплавления и растворяют в растворе соляной кислоты 1:3. При необходимости последующего определения оксида серы для разложения навески пробы вместо серной используют азотную кислоту.

6.2.3. Обработка результатов

Массовую долю оксида кремния в процентах вычисляют по формуле

масса тигля с навеской пробы, г;

масса тигля с прокаленным остатком, г;

масса навески пробы, г.

6.3. Гравиметрический метод при массовой доле оксида кремния до 90%

Метод основан на коагуляции желатином кремнекислоты, выделившейся при разложении анализируемой пробы концентрированной соляной кислотой при нагревании, способствующем быстрому количественному переводу ее в нерастворимое состояние, последующем прокаливании выделенного осадка при температуре 1000 град.С и нахождении массовой доли оксида кремния по изменению массы выделенного осадка.

6.3.1. Средства анализа

Весы лабораторные общего назначения.

Кислота соляная по ГОСТ 3118.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204.

Кислота азотная по ГОСТ 4461.

Желатин пищевой по ГОСТ 11293, раствор массовой концентрацией 10 г/куб.дм. 1 г желатина растворяют в 100 куб.см воды, нагретой до 70 град.С, раствор должен быть свежеприготовленным.

Натрий углекислый по ГОСТ 83.

Серебро азотнокислое по ГОСТ 1277, раствор массовой концентрацией 10 г/куб.дм.

Смесь для сплавления по п. 6.4.1.

6.3.2. Проведение анализа

Клинкер, портландцемент, шлакопортландцемент и другие материалы, поддающиеся разложению кислотами, переводят в раствор обработкой соляной кислотой. Для этого навеску пробы массой 0,5 г помещают в стакан вместимостью 50 куб.см и осторожно добавляют 10 куб.см соляной кислоты так, чтобы она стекла по стенке стакана, и накрывают часовым стеклом.

Для сырьевой смеси, пуццолановых цементов, кислых шлаков, кремнийсодержащих материалов, не поддающихся разложению кислотами, навеску пробы массой 0,5 г тщательно перемешивают в платиновом тигле с двукратным количеством углекислого натрия и предварительно до обработки соляной кислотой спекают в муфельной печи при температуре 950-1000 град.С в течение 3-7- мин. После охлаждения тигля спек растворяют 10-15 куб.см соляной кислоты, которую приливают в тигель небольшими порциями, количественно переносят раствор в стакан вместимостью 50 куб.см и накрывают часовым стеклом.

Независимо от способа разложения навески стакан погружают в нагретую до температуры 60-70 град.С водяную баню и выдерживают 10 мин. Затем прибавляют 10 куб.см желатина, энергично перемешивают в течение 1 мин, не вынимая стакан из водяной бани, и нагревают еще 10 мин. Раствор фильтруют в теплом виде через беззольный фильтр "белая лента", количественно перенося осадок на фильтр. Осадок промывают на фильтре 10-12 раз небольшими порциями горячей воды (температурой не выше 70 град.С), давая полностью стечь каждой порции и собирая фильтрат в стакан вместимостью 300 куб.см или мерную колбу вместимостью 250 куб.см.

Читайте так же:
Опилки цемент песок жидкое стекло

Полученный фильтрат используют для последующих определений массовой доли оксидов кальция, железа, алюминия и др.

Осадок с фильтром переносят во взвешенный платиновый тигель, озоляют без воспламенения, прокаливают в муфельной печи при температуре 1000 град.С до постоянной массы, охлаждают в эксикаторе и взвешивают.

Полученный осадок кремнекислоты проверяют на чистоту. Для этого его смачивают 2-3 каплями воды, приливают под вытяжным шкафом 3-5 капель серной кислоты, 8-10 куб.см фтористоводородной кислоты и осторожно выпаривают на электрической плитке до прекращения выделения паров серной кислоты. Сухой остаток прокаливают в муфельной печи при температуре 900-1000 град.С в течение 3-5 мин, охлаждают в эксикаторе и взвешивают.

Затем остаток сплавляют по п. 6.4.2.1 со смесью для сплавления и присоединяют к полученному выше фильтрату.

Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании

Срок действия с 01.01.90
до 01.01.2000*
________________________________
* Ограничение срока действия снято
по протоколу N 7-95 Межгосударственного Совета
по стандартизации, метрологии и сертификации
(ИУС N 11, 1995 год). — Примечание изготовителя базы данных.

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

И.М.Кузьмин, Л.В.Камаева (руководитель темы), Н.А.Зобнина, Н.Н.Шавкунова

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 29.03.89 N 860

3. Срок первой проверки — 1996 г.

Периодичность проверки — 7 лет.

4. Стандарт соответствует СТ СЭВ 6155-88

5. ВВЕДЕН ВПЕРВЫЕ

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер раздела, пункта

Настоящий стандарт распространяется на марганцевые руды, концентраты и агломераты и устанавливает гравиметрический метод определения потери массы при прокаливании от 0,5 до 30%.

Метод основан на прокаливании навески руды, концентрата или агломерата при температуре 950-1000 °С в окисляющей атмосфере и вычислении "найденной" потери массы при прокаливании, представляющей алгебраическую сумму всех потерь и прибавок, происходящих при прокаливании при указанной температуре, или вычислении потери массы при прокаливании с учетом окисления и разложения соединений марганца.

1. ОТБОР ПРОБ

2. ОБЩИЕ ТРЕБОВАНИЯ

3. АППАРАТУРА И РЕАКТИВЫ

Печь муфельная с терморегулятором, обеспечивающая температуру нагрева 1000 °С;

эксикатор по ГОСТ 25336, ГОСТ 23932*;
_______________
* На территории Российской Федерации действует ГОСТ 23932-90. — Примечание изготовителя базы данных.

тигли фарфоровые по ГОСТ 9147 или кварцевые;

кальций хлористый, прокаленный при 700-800 °С, или плавленный для заполнения эксикатора;

4. ПРОВЕДЕНИЕ АНАЛИЗА

Навеску пробы массой 0,5-1,0 г помещают в прокаленный при 1000 °С до постоянной массы, охлажденный в эксикаторе и взвешенный тигель, располагая ее ровным слоем. Тигель с навеской помещают в муфельную печь, нагретую до температуры примерно 400 °С, постепенно повышают температуру до 950-1000 °С и выдерживают при этой температуре 1 ч. После охлаждения в эксикаторе тигель с навеской взвешивают, затем вновь помещают в муфельную печь, прокаливают в течение 30 мин, охлаждают и взвешивают. Прокаливание в течение 30 мин и взвешивание повторяют до получения постоянной массы. Повторное прокаливание можно не проводить, если предварительно установить время, необходимое для достижения данным материалом постоянной массы при прокаливании.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Найденную потерю массы при прокаливании (ГОСТ 28077-89 (СТ СЭВ 6155-88) Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании) в процентах вычисляют по формуле

ГОСТ 28077-89 (СТ СЭВ 6155-88) Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании,

где — масса навески с тиглем до прокаливания, г;

— масса навески с тиглем после прокаливания, г;

— масса навески воздушно-сухой пробы, г;

— массовая доля гигроскопической влаги в анализируемой пробе, %;

— коэффициент пересчета потери массы при прокаливании в сухом материале, вычисляемый по формуле

ГОСТ 28077-89 (СТ СЭВ 6155-88) Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании.

При проведении определения из высушенной пробы найденную потерю массы при прокаливании (ГОСТ 28077-89 (СТ СЭВ 6155-88) Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании) в процентах вычисляют по формуле

ГОСТ 28077-89 (СТ СЭВ 6155-88) Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании,

где — масса навески высушенной пробы, г.

5.2. Истинную потерю массы при прокаливании (ГОСТ 28077-89 (СТ СЭВ 6155-88) Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании) с учетом окисления и разложения соединений марганца в процентах вычисляют по формуле

ГОСТ 28077-89 (СТ СЭВ 6155-88) Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании

,

где ГОСТ 28077-89 (СТ СЭВ 6155-88) Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании— массовая доля двуокиси марганца в анализируемой пробе, определяемая по ГОСТ 22772.3*, %;
_______________
* На территории Российской Федерации действует ГОСТ 22772.3-96, здесь и далее по тексту. — Примечание изготовителя базы данных.

ГОСТ 28077-89 (СТ СЭВ 6155-88) Руды марганцевые, концентраты и агломераты. Метод определения потери массы при прокаливании— массовая доля двуокиси марганца в анализируемой пробе после прокаливания, определяемая по ГОСТ 22772.3, %;

0,184 — коэффициент пересчета двуокиси марганца на активный кислород.

5.3. Расхождение между результатами двух определений при доверительной вероятности =0,95 не должно превышать величины, указанной в таблице.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector