Aprospect.ru

Агентство недвижимости
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение Марки Кирпича По Прочности

Определение Марки Кирпича По Прочности

определение марки кирпича по прочности

Прочность кирпича – это свойство материала сопротивляться разрушению и деформациям под действием напряжений, возникающих от внешних нагрузок или других факторов (неравномерная усадка, нагревание и т.п.). Прочность материала обусловлена силами взаимодействия его структурных частиц (атомов, молекул). Количественно оценивается пределом прочности, т.е. предел прочности (временное сопротивление) – это напряжение, соответствующее наибольшей (разрушающей) нагрузке в момент разрушения материала к единице площади. Напряжение – это равнодействующая внутренних сил, приходящаяся на 1 см2 поперечного сечения материала. Разрушение – это ослабление между частицами при нарушении сплошности структуры. Различают хрупкое, т.е. мгновенное (без деформации) и пластическое (с деформацией) разрушение материала.

Оборудование для производства кирпича и плитки предполагает обязательное испытание тестовых образцов на пределы прочности, перед запуском линии на полную мощность. Далее мы подробней рассмотрим методы и подходы в определении прочности материалов.

Кирпич является стеновым материалом, поэтому при эксплуатации он испытывает сжимающие и изгибающие нагрузки. Для определения марки кирпича по прочности как на сжатие, так и при изгибе определяют на целом кирпиче, используя прессовое оборудование (рис. 1).

Для этого в местах опирания и приложения нагрузки поверхность выравнивают цементным или гипсовым раствором с песком состава 1:1 с В/Ц=0,4-0,42 или применяют прокладки из технического войлока, резинотканых пластин.

Предел прочности при изгибе RИЗГ, МПа, образца вычисляют по формуле

где F — разрушающая нагрузка, Н (кгс); l — расстояние между осями опор, мм (см); α — ширина образца, мм (см); b — высота образца по середине пролета, мм (см).

Схема испытаний кирпича на изгиб

Рис. 1. Схема испытаний кирпича на изгиб

Определение марки кирпича по прочности на сжатие

Предел прочности при сжатии определяют на образцах, состоящих из двух целых кирпичей или из двух его половинок. По ГОСТу допускается определять марку кирпича по прочности на сжатие при испытаниях на половинках кирпича, после его тестирования на изгиб. Для определения предела прочности при сжатии кирпича пластического формования из двух кирпичей или двух половинок изготавливают образцы в виде куба.

Для этого приготавливают цементно-песчаный раствор состава 1:1 с В/Ц=0,4-0,42. Кирпич погружают в воду на 1 мин. На горизонтальную пластину укладывают лист бумаги, слой раствора толщиной 3-5 мм и первый кирпич или его половинку, затем слой раствора и вторую часть образца. При этом поверхности излома при использовании половинок кирпича должны быть направлены в противоположные стороны.

Верхнюю поверхность второго кирпича или половинки выравнивают цементным раствором толщиной 3-5 мм, укладывают лист бумаги и прижимают стеклом.

Перед испытанием на марку прочности керамического кирпича, образец выдерживают в течение 3 суток в помещении при температуре (20±5) °С и относительной влажности воздуха 60-80 % для набора прочности цементно-песчаного раствора.

Определяя предел прочности при сжатии, можно для выравнивания поверхностей сухих образцов применять прокладки из технического войлока, резинотканых пластин, картона.

Образцы, выполненные по технологии Полусухое прессование керамического кирпича, испытывают насухо, не выравнивая их поверхности. Предел прочности при сжатии RСЖ, МПа, определяют по формуле

где F — разрушающая нагрузка, Н (кгс); А — площадь поперечного сечения образца как среднее арифметическое значение площадей верхней и нижней его поверхности, мм2 (см2). При вычислении предела прочности при сжатии образцов утолщенных кирпичей результаты вычислений умножают на коэффициент 1,2.

По значениям пределов прочности при сжатии и изгибе определяют марку кирпича по таблице на рис. 2.

Марка прочности кирпича

Рис. 2. Марка прочности кирпича глиняного обыкновенного

Упрощенный способ определения марки кирпича по прочности

Молоток массой 1 кг берут за нижнюю часть рукояти, локоть прижимают к туловищу у пояса, ударником молотка касаясь плеча. Удар наносят по наибольшей грани кирпича. В зависимости от степени разрушения кирпича по таблице на рис. 3 определяют его марку.

В условное обозначение стеновых керамических материалов (кирпичи, камни), кроме показателя марки по прочности, входит значение морозостойкости в количествах циклов замораживания и оттаивания и буквенные обозначения: К — керамический, Р — рядовой, Л — лицевой, П — пустотелый, О — одинарный, У — утолщенный (для кирпича), У — укрупненный (для камня), Пр — профильный. В конце обозначения указывается СТБ.

  • кирпич керамический рядовой пустотелый одинарный марки по прочности 150, по морозостойкости F15 будет иметь буквенное обозначение — кирпич КРПО-150/15/СТБ1160-99;
  • камень керамический рядовой укрупненный марки по прочности 150, по морозостойкости F15, будет иметь буквенное обозначение — камень КРУ 150/15/СТБ1160-99.

Рис. 3. Определение ориентировочной марки кирпича

Предел прочности кирпича

Предел прочности кирпича определяют нагружением до разрушения испытываемых образцов материала с помощью гидравлических прессов или разрывных машин (рис.4). Испытание проводят на образцах (кубах, цилиндрах, призмах, балочках), форма и размеры которых указаны в стандартах на соответствующий материал.

Рис. 4. Пресс для испытания кирпича на прочность

Кирпичи в конструкциях подвергаются сжатию, растяжению, кручению, срезу, изгибу. В целом, некоторые строительные материалы хорошо сопротивляются сжатию и значительно хуже – растяжению и изгибу. Например, природные каменные материалы, бетон и др. Поэтому такие материалы используются в конструкциях, работающих преимущественно на сжатие. Металлы и дерево имеют высокую прочность, как на растяжение, так и на сжатие и изгиб. Поэтому их применяют в конструкциях, работающих на изгиб, сжатие и растяжение.

Читайте так же:
Чем лучше сверлить силикатный кирпич

Вместе с тем разрушение кирпича, в физическом понимании, состоит в отделении частичек материала друг от друга. И особенностью поведения под нагрузкой, например, каменных (хрупких) материалов является то, что при сжатии они тоже разрушаются от растягивающих напряжений, возникающих в направлениях, перпендикулярных действию сжимающей нагрузки, т.е. вследствие разрыва материала в поперечном направлении. Разрушение их обусловлено развитием микротрещин отрыва, направленных параллельно действующему усилию. Сначала по всему объёму возникают микроскопические трещины отрыва. С ростом нагрузки микротрещины отрыва соединяются, образуя видимые трещины, направленные параллельно или с небольшим наклоном к направлению действия сжимающих сил. Затем трещины раскрываются, что сопровождается кажущимся увеличением объёма, и наступает полное разрушение.

Наклон трещин разрыва обусловлен силами трения, которые развиваются на контактных поверхностях – между плитами пресса и гранями образцов (кубов, призм). Поэтому после разрушения образцы (кубы) приобретают форму усечённых пирамид, сложенных вершинами. Если при осевом сжатии образца устранить влияние сил трения смазкой контактных поверхностей, трещины разрыва становятся вертикальными, параллельными действию сжимающей силы, а временное сопротивление уменьшается примерно вдвое (рис. 5). Однако согласно стандартам, образцы материалов при определении прочности на сжатие испытывают без смазки контактных поверхностей.

Рис. 5. Схема деформирования образцов бетона при сжатии: а – при наличии трения по опорным плоскостям; б – при отсутствии трения

Предел прочности при сжатии или растяжении вычисляют делением максимальной нагрузки при разрушении образца (F) на площадь первоначального поперечного сечения (A):

Предел прочности при изгибе определяют на образцах призмах, расположенных на двух опорах. Сила (F) прикладывается, как правило, в середине образца.

где l – расстояние между опорами, см; b – ширина образца, см; h – высота, см.

Нагрузка выражается в меганьютанах (МН), площадь – в квадратных метрах (м2). Поэтому предел прочности, как и напряжение, в Международной системе единиц (СИ) измеряется МН/м2 или в МПа. В некоторых нормативных документах сохраняется размерность показателя предела прочности в технической системе единиц – кгс/см2.

На величину прочности испытываемых кирпичей оказывают влияние размеры и форма образцов, характер обработки их поверхности, скорость нарастания нагрузки и другие факторы. Поэтому при испытании кирпича необходимо строго придерживаться указаний стандарта.

Согласно статистической теории прочность образцов лимитирована дефектами, содержащимися в их объёме. С увеличением объёма образца повышается вероятность существования в нем крупного дефекта. Поэтому средняя прочность образцов одного и того же материала возрастает с уменьшением их размеров. Такая зависимость получила название масштабного фактора. Чтобы исключить влияние масштабного фактора при установлении прочности материалов, надо либо строго придерживаться стандартных размеров образцов, либо пользоваться масштабными коэффициентами, равными отношению прочности образцов произвольных размеров к прочности стандартных образцов.

Различают теоретическую (прочность с идеальной структурой) и реальную (техническую) прочность кирпича. Теоретической прочности соответствует напряжение, возникающее в кирпиче, равное силе межатомного притяжения. Считается, что значения прочности материалов, полученных экспериментально, на несколько порядков меньше значений теоретической прочности. Это обусловлено дефектами структуры существующих материалов, из-за чего нагрузка при испытаниях распределяется неравномерно по сечению образца.

Предел прочности при сжатии кирпича колеблется в довольно широких пределах. Например, у керамического кирпича от 7,5 до 30 МПа, у бетона – до 115 МПа и более (рис. 6).

Рис. 6. Прочность и модуль упругости некоторых строительных материалов

По прочности строительные материалы обычно подразделяют на марки, классы или сорта. Методы испытания для определения прочности путём разрушения испытываемых образцов называются разрушающими. Однако традиционные методы определения прочности с изготовлением стандартных образцов не всегда соответствуют реальной прочности материала в конструкциях. Более достоверными результаты могли быть при испытании выбуренных кернов из конструкции. Однако это приведёт к ослаблению конструкций.

В строительной практике применяются и неразрушающие способы контроля прочности. Количественная оценка свойств материала такими способами производится по косвенным показателям – скорости распространения ультразвукового импульса (ультразвуковой способ), по частоте собственных колебаний (резонансный), величине пластической деформации (механические) и др.

Из механических методов наиболее распространён так называемый метод НИИ Мосстроя с помощью молотка конструкции К.П. Кашкарова или Н.А. Физделя (рис. 7). Он основан на том, что при ударе молотком по поверхности испытываемого материала одновременно образуется два отпечатка: на материале и на эталонном стержне в молотке. Затем по величине соотношения диаметров отпечатков и предварительно построенному тарировочному графику определяют прочность материала ГОСТ 26690.

Читайте так же:
Расчет количества облицовочных кирпичей

Коэффициент конструктивного качества (удельная прочность) оценивается по отношению прочности материала к его средней плотности. Наиболее эффективными являются материалы, имеющие наименьшую плотность и наиболее высокую прочность. Физически коэффициент конструктивного качества выражает собой максимальную высоту столба из данного материала, когда в основании под действием собственной массы возникают разрушающие напряжения.

Рис. 7. Молоток Кашкарова для определения прочности строительного материала

Теплопроводность кирпича, сравнение кирпича по теплопроводности

Теплопроводность кирпича, сравнение кирпича по теплопроводности

Рассмотрена теплопроводность кирпича различных видов (силикатного, керамического, облицовочного, огнеупорного). Выполнено сравнение кирпича по теплопроводности, представлены коэффициенты теплопроводности огнеупорного кирпича при различной температуре — от 20 до 1700°С.

Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпичи с меньшей плотностью имеют теплопроводность ниже, чем с высокой. Например, пеношамотный, диатомитовый и изоляционный кирпичи с плотностью 500…600 кг/м 3 обладают низким значением коэффициента теплопроводности, который находится в диапазоне 0,1…0,14 Вт/(м·град).

Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый). Значение коэффициента теплопроводности кирпича указанных типов может существенно отличатся.

Керамический кирпич. Производится из высококачественной красной глины, составляющей около 85-95% его состава, а также других компонентов. Такой кирпич изготавливают путем формовки, сушки и обжига, при температуре около 1000 градусов Цельсия. Теплопроводность керамического кирпича различной плотности составляет величину 0,4…0,9 Вт/(м·град).

По сфере применения керамический кирпич подразделяется на рядовой строительный, огнеупорный и лицевой облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность и однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича равна 0,37…0,93 Вт/(м·град).

Силикатный кирпич. Изготавливается из очищенного песка и отличается от керамического составом, цветом и теплопроводностью. Теплопроводность силикатного кирпича немного выше и находится в интервале от 0,4 до 1,3 Вт/(м·град).

Сравнение кирпича по теплопроводности при 15…25°С

КирпичПлотность, кг/м 3Теплопроводность, Вт/(м·град)
Пеношамотный6000,1
Диатомитовый5500,12
Изоляционный5000,14
Кремнеземный0,15
Трепельный700…13000,27
Облицовочный1200…18000,37…0,93
Силикатный щелевой0,4
Керамический красный пористый15000,44
Керамический пустотелый0,44…0,47
Силикатный1000…22000,5…1,3
Шлаковый1100…14000,6
Керамический красный плотный1400…26000,67…0,8
Силикатный с тех. пустотами0,7
Клинкерный полнотелый1800…22000,8…1,6
Шамотный18500,85
Динасовый1900…22000,9…0,94
Хромитовый3000…42001,21…1,29
Хромомагнезитовый2750…28501,95
Термостойкий хромомагнезитовый2700…38004,1
Магнезитовый2600…32004,7…5,1
Карборундовый1000…130011…18

Теплопроводность кирпича также зависит от его структуры и формы:

  • Пустотелый кирпич — выполнен с пустотами, сквозными или глухими и имеет меньшую теплопроводность в сравнении с полнотелым изделием. Теплопроводность пустотелого кирпича составляет от 0,4 до 0,7 Вт/(м·град).
  • Полнотелый — используется, как правило, при основном строительстве несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич в 1,5-2 раза лучше проводит тепло, чем пустотелый.

Печной или огнеупорный кирпич. Изготавливается для эксплуатации в агрессивной среде, применяется для кладки печей, каминов или теплоизоляции помещений, которые находятся под воздействием высоких температур. Огнеупорный кирпич обладает хорошей жаростойкостью и может применяться при температуре до 1700°С.

Теплопроводность огнеупорного кирпича при высоких температурах увеличивается и может достигать значения 6,5…7,5 Вт/(м·град). Более низкой теплопроводностью в сравнении с другими огнеупорами отличается пеношамотный и диатомитовый кирпич. Теплопроводность такого кирпича при максимальной температуре применения (850…1300°С) составляет всего 0,25…0,3 Вт/(м·град). Следует отметить, что теплопроводность шамотного кирпича, который традиционно применяется для кладки печей, — выше и равна 1,44 Вт/(м·град) при 1000°С.

Керамический кирпич химический состав

Основное сырье — легко­плавкие глины (огнеупорность по ГОСТ 9169—75 ниже 1350 °С) в плотном, рыхлом и пластическом состоянии, а также трепельные и диатомовые породы, отходы добычи и обо­гащения угля, золы ТЭС.

Вторичные или осадочные легкоплавкие глины имеют большей частью желтые и бу­рые оттенки. Их химический состав, % по .массе: оксид кремния SiOj 60—80; глинозем АЬОз вместе с диоксидом титана TiOj 5—20; оксид железа FejOj вместе с FeO 3—10; оксид кальция СаО 0—25; оксид магния MgO О—3; серный ангидрид 8Оз 0—3; оксиды ще­лочных металлов NasO+KzO 1—5; ППП до 15%.

Оксид кремния находится в связанном состоянии в составе глинообразующих минера­лов и в свободном состоянии в виде кварце­вого песка, тонких пылевидных частиц, реже в виде кремния. С увеличением количества песка уменьшаются усадка и прочность из­делия. Тонкодисперсные фракции повышают чувствительность глин к сушке.

Оксид алюминия находится в глине в со­ставе глинообразующих минералов и слюдя­нистых примесей. С повышением его содер­жания, как правило, повышается пластичность глины, возрастает прочность сформованных, сухих и обожженных изделий, увеличивается их огнеупорность.

Диоксид титана влияет на окраску из­делий.

Оксид железа способствует образованию после обжига красноватого цвета изделиям. При его содержании более 3 % и наличии восстановительной среды оксид железа сни­жает температуру обжига изделий.

Читайте так же:
Сырцовый кирпич с соломой название

Присутствие частиц известняка размером 1—2 мм приводит при обжиге к образованию оксида кальция, который под влиянием влаги воздуха гасится, увеличиваясь в объеме («дутик»), а при большом содержании даже к разрушению изделия. Присутствие в глине сульфата кальция — причина образования на обожженных изделиях белых налетов.

Оксиды щелочных металлов находятся в глинах в составе слюд и полевых шпатов, а в примесях в виде растворимых солей. Являются плавнями, при сушке изделия миг­рируют на поверхность, а после обжига спе­каются, придавая ему большую прочность. Растворимые соли образуют на поверхности изделия белесоватый налет.

Органические примеси находятся чаще всего в коллоидном состоянии, связывают большое количество воды, повышают пластич­ность глин, а при сушке сырца являются при­чиной воздушной усадки и образования трещин. Органические примеси придают изделиям при обжиге более темный цвет. Эти примеси, хи­мически связанная вода в водных кристалло­гидратах и алюмосиликатах, а также СО г кар­бонатов — удаляются из изделия при терми­ческой обработке.

Легкоплавкие глины обычно состоят из не­скольких минералов, преимущественно монтмориллонитовой и гидрослюдистой групп, а так­же с примесью минералов каолинитовой группы. Глинистые породы на их основе от­личаются высокой степенью дисперсности (<0,005 мм), пластичности, сильно набухают, высыхают медленно и наиболее чувствительны к сушке и обжигу. Гидрослюдистые глины, со­держащие иллит K2O-MgO-4Al2O3-7Si02-2НгО, отличаются средней дисперсностью и пластичностью. Каолинитовые глины, состоящие из минералов каолинита, диккита, накрита с одинаковым химическим составом Al2O3 •2SiO2•2H2O, слабо набухают в воде, мало чувствительны к сушке и обжигу.
По гранулометрическому составу или распределению зерен в глинистой породе (% по массе) глины разделяют на высокодисперсные с содержанием более 85 % частиц размером менее 0,01 мм и более 60 % частиц менее 0,001 мм; дисперсные с содержанием 40— 85 % частиц менее 0,01 мм и 20—60 % частиц менее 0,001 мм; грубодисперсные, если соот­ветственно тех же фракций менее 40 % и менее 20 %. Чем более дисперсно-глинистое сырье, тем оно пластичнее. По содержанию крупнозернистых включений размером более 0,5 мм различают группы глинистого сырья (%): с низким их содержанием — не более 1, со средним — 1—5, с высоким — более 5. Мел­кими считают включения менее 2 мм, сред­ними — 2—5, крупными более 5 мм.

Сырье для производства керамических материалов оценивается по следующим по­казателям:

  • пластичности,
  • связующей способно­сти,
  • чувствительности к сушке,
  • воздушной усад­ке при сушке, огневой при обжиге,
  • спекаемости и огнеупорности.

Пластичность глин — их способность под воздействием внешних усилий принимать лю­бую форму без разрыва сплошности и сохра­нять ее после прекращения этих усилий. Со­гласно ГОСТ 21216.1—81* пластичность глин характеризуется числом пластичности: Я— =*№т

Wp, где Ч^т — влажность предела теку­чести, %, являющаяся границей между плас­тическим и вязкотекучим состоянием системы; Ц7Р — влажность предела раскатывания, %, которая находится на границе между хруп­ким и пластическим состоянием системы. По степени или числу пластичности глины разде­ляют на высокопластичные — более 25; среднепластичные— 15—25; умереннопластичные— 7—15; малопластичные — менее 7; непластич­ные. Чем пластичнее глина, тем больше воды необходимо для получения формовочной мас­сы. Влажность массы составляет, %: из вы­сокопластичных глин 25—30, из среднепластич-ных 20—25 и малопластичных 15—20.

Связующая способность глин определяет их возможность сохранять пластичность при смешивании с непластичными материалами и измеряется количеством нормального песка (ГОСТ 6139—78), при добавлении которого образуется масса с числом пластичности 7. В зависимости от способности глин связывать то или иное количество нормального песка (%) их разделяют на высокопластичные (60—80); пластичные (20—60); низкопластич- ные — тощие (20); камнеподобные — сланцы, сухарные глины (не образуют теста).

Воздушной усадкой (линейной или объем­ной) глинистого сырья называют изменение линейных размеров или объема сформованных из него образцов при сушке

где /| и /г — расстояние между метками по диа­гонали образца до и после сушки.

Чувствительность глины к сушке характе­ризуется коэффициентом чувствительности Кч, определяемым по формуле

где AVec — усадка единицы объема образца, высушенного до воздушно-сухого состояния; V, — объем пор, отнесенный к единице объема образца.

По степени чувствительности к сушке гли­ны разделяют на следующие классы: при /CiSjl — глины малой чувствительности; /(,= = 1 —1,5 — глины средней чувствительности; /Сч^1,5 глины высокочувствительные (глины с /Сч=0,5 и менее также относятся к высоко­чувствительным, так как отличаются очень низкой трещиностойкостью).

Огневой усадкой называют изменение ли­нейных размеров высушенных изделий после их обжига н определяют по формуле

где /2 и /з — расстояние между метками после сушки и после обжига изделия.

Спекаемость глин — их способность при обжиге уплотняться с образованием твердого камнеподобного тела (черепка). Классифика­ция глин по температуре спекания: низко­температурная с температурой спекания до 1100°С, среднетемпературная соответственно 1100— 1300 «С; высокотемпературная свыше 1300 °С. Разность между температурой спе­кания Тс и началом деформации 7″д (спека­ния) называют температурным интервалом спекания Т*=ТС+ТЛ. Интервал спекания глин, применяемых в кирпичном производстве, обыч­но составляет 50 — 100 «С. Керамические стено­вые материалы пластического формования об­жигают при 900—980 °С, а полусухого на 50— 100°С выше.

Читайте так же:
Чтобы изготовить кирпич нужно

Огнеупорность глин — их свойство противо­стоять не расплавляясь воздействию высоких температур. Глины делят на огнеупорные с показателем огнеупорности свыше 1580 °С, тугоплавкие —1350—1580 °С и легкоплавкие — до 1350 °С. Кирпич-сырец пластического прессования из трепелов и диатомитов обладает небольшой воздушной и огневой усадками, выдерживает быструю сушку, однако в ряде случаев недостаточно морозостоек и требует дополнительных технологических мероприятий для устранения этого недостатка, например при полусухом прессовании обработку в стержневых смесителях.

Отходы углеобогащения обладают недоста­точно стабильными свойствами, но могут ис­пользоваться как основное сырье в производ­стве кирпича и керамических камней. Содер­жание оксидов в зависимости от месторож­дения, %: SiO2 55—63; А12О3 17—23: Fe2O3 + + FeO 3—11; СаО до 3,8; R2O до 2,7; содер­жание угля в пересчете на С 5—25. Отходы углеобогащения гравитационного процесса крупностью более 1 мм и флотационного крупностью менее 1 мм Донецкого, Кузнец­кого, Карагандинского, Печерского, Экибастуз-ского и других бассейнов относятся к группе с содержанием 60—70 % глинистых минера­лов.

Золы ТЭС состоят в основном из кислого алюмосиликатного стекла, аморфизированного глинистого вещества, кварца, полевого шпата, муллита, магнетита, гематита и остатков топ­лива. По нормам допустимое содержание остатков горючих в золе-уносе ТЭС должно находиться, % от массы золы: бурых углей и сланцев менее 4, каменных углей 3—12, антрацита 15—25 (подробнее см. п. 3.3.3). В производстве кирпича золу с удельной поверхностью 2000—3000 с.м2/г используют в качестве основного сырья и в качестве отощающей и выгорающей добавки. В связи с повышенной влажностью и наличием шлака золу отвала перед подачей в производство необходимо подсушивать в естественных усло­виях и измельчать шлаковые включения. Удельная теплота сгорания золы в зависи­мости от содержания несгоревших частиц топ­лива 4200—12500 кДж/кг (1000—3008 ккал/кг). 8 глиняную массу вводят 15.—45 % золы ТЭС. Предпочтение следует отдавать золам с низ­ким содержанием CaO+MgO и температурой размягчения до 1200 «С. Золы бурых углей вследствие низкого содержания несгоревших частиц, а также высококальциевые золы не оказывают положительного влияния на свой­ства керамической массы и готовых изделий.

Корректирующие добавки. В глинистое сырье вводят отощители, пластификаторы, флюсующие (плавни), топливосодержащие, регулирующие высолы на его поверхности. В большинстве случаев введение добавки оказывает комплексное влияние.

Кварцевый песок — распространенный отощитель. При обычных температурах обжига изделий он не взаимодействует с расплавом и тем самым способствует устойчивости из­делий при сушке и обжиге.

Древесные опилки армируют глиняную массу, улучшают формовочные свойства, по­вышают трещиностойкость при сушке, однако снижают прочность изделий и повышают их водопоглощение. Более эффективно применять 5—10 % опилок в сочетании с минеральными отощителями.

Отвальные и гранулированные шлаки чер­ной и цветной металлургии, топливные шлаки снижают чувствительность сырца к сушке, повышают трещиностойкость и улучшают про­цесс обжига.

Пластифицирующие добавки используют для придания малопластичному (тощему) гли­нистому сырью необходимой формуемости, улучшения сушильных свойств и получения прочных изделий. В качестве пластифицирующих и одновременно обогащающих добавок применяют высокопластичные, тонкодисперс­ные, огнеупорные или тугоплавкие глины, отходы добычи и обогащения углей, бентони­товые глины, а также органические и ПАВ, электролиты. СДБ, технический лигнин, триэта-исламин, введенные в количестве 0,1 — 1 % мас­сы сухой глины повышают пластичность сырья благодаря образованию на поверхности гли­нистых частиц адсорбционных пленок, играю­щих роль смазки. Наиболее эффективный спо­соб введения пластифицирующих добавок — в виде шликера или суспензии вместе с водой затворения.

Флюсующие добавки способствуют появле­нию жидкой фазы при обжиге изделий при более низких температурах в результате обра­зования с компонентами основного сырья низкотемпературных эвтектик. В качестве флю­сующих ­ добавок используют тонкомолотый бой стекла, шлаки, пиритные огарки и др.

К окрашивающим добавкам относят тонкомолотые светложгущиеся глины, марганце­вые, железные и фосфорные руды, карбонат­ные породы и др. Подготовка добавок сво­дится к измельчению или просеиванию их до заданного зернового состава.

Существует множество разновидностей кирпича, среди всех типов можно выделить основные параметры различия:

  • материал изготовления
  • степень наполнения
  • размер
  • применение

Теперь давайте разберемся и рассмотрим каждую характеристику отдельно.

Различие по материалу изготовления

20%), он служит связующим материалом. Основу составляет: известняк, отходы от разработок камня, мрамора или мергеля.

Керамический кирпич: достоинства и недостатки материала и другая важная информация

керамический кирпич плюсы и минусы

Керамический кирпич — это современный стройматериал, который славится богатой историей. Подобный строительный материал создают из глины. Глина придает керамическому кирпичу экологичность и высокую прочность. Благодаря этим характеристикам подобный материал является по-прежнему надежным строительным материалом, который многие люд используют для строительства своих домов. Поэтому вместе с порталом Beton-Area.com мы узнаем какие плюсы и минусы имеет керамический кирпич.

Особенности производства

керамический кирпич плюсы и минусы

Основные свойства кирпича зависят напрямую от технологии производства этого материала. Для производства такого кирпича используется глина мелкой фракции. Качество кирпича также зависит от способа добычи этого материала. Для добычи глины используют особенные экскаваторы с одни ковшом. Такая техника добывает качественную глину для того, чтобы масса получилась однородной. Также стоит отметить, что такая техника способна вести добычу глины максимально аккуратно. Но несмотря на это, способ такой используется крайне редко. И объяснить это можно нерентабельностью подобного метода. Поэтому в основном для добычи глины используют роторные установки. Подобное оборудование способно захватить сразу несколько слоев. Из-за того, что глина смешивается с другими материалами, керамический кирпич высокого качества получить крайне сложно.
Чтобы смешивание слоев негативным образом не сказывалось на технических характеристиках материала, специалисты применяют специальную систему обжига. Для такой цели применяют специальные печи, которые способны выдавать высокую температуру в 900 градусов. При такой температуре тугоплавкие компоненты связываются с легкоплавкими веществами. В зависимости от пропорций вышеупомянутых компонентов изготавливаются изделия, которые будут иметь определенную структуру. А структура непосредственно влияет на характеристики керамического кирпича. Отсюда следует, что получить качественный кирпич можно лишь в том случае, если соблюсти всю технологию производства.

Читайте так же:
Проникающая изоляция для кирпича

Керамический кирпич и его разновидности

Керамический кирпич имеет замечательные характеристики, благодаря которым этот материал выбирают многие люди. Сегодня производят две разновидности керамического кирпича. Оказывается, существует обожженный или необожженный вариант кирпича.
Необожженный кирпич высыхает в нормальных условиях. В последнее время подобные изделия перестали изготавливать. В настоящее время активно ведется производство обожженного кирпича. Выпускают такие изделия в соответствии с ГОСТ 530-2007. ГОСТ 7484-78.

керамический кирпич плюсы и минусы

керамический кирпич может разделяться на несколько классификаций.

  • Первая классификация, которая называется строительной применяется для возведения несущих конструкций в здании.
  • Вторая классификация кирпича называется — рядовой. Обычно такие кирпичи выпускаются пустотелыми.
  • Третья классификация кирпича является облицовочной. Такой вид керамического кирпича имеет ровную кромку, которая обладает хорошей прочностью и эстетичным внешним видом.

Если посмотреть на внешний облик кирпича, то можно заметить, что кирпич может иметь гладкую или рифленую поверхность. Керамический кирпич на производстве окрашивается. Такой материал можно свободно использовать для строительства новых домов. Кроме этого, такой материал подойдет для реставрации старых объектов.
Кроме, керамического кирпича производят некоторые особенные разновидности материала, которые производятся для создания печей и каминов. Такие разновидности характеризуются особенным производством. Во время их изготовления в состав добавляют шамот. На втором этапе сырье незначительно обжигается и измельчается. Затем снова из сырья формируют кирпичи ровной формы.

Структура керамического кирпича

Современные производители керамического кирпича выпускают этот строительный материал двух видов. Итак, бывает полнотелый и пустотелый кирпич. Полнотелые бруски, созданные из обожженной глины, не имеют отверстий. Вес такого кирпича обычно составляет 3 либо 4 килограмма. Кирпич такого вида имеет высокую цену. Поэтому такой кирпич в современном строительстве участвует крайне редко.

Однако подобную разновидность кирпича используют для строительства печей. Также такой кирпич подойдет для возведения подвалов и оснований фундамента. Также такой кирпич подойдет для создания прочных стен.

Пустотелый керамический кирпич оснащен отверстиями в виде кругов или квадратов. Такие изделия гораздо легче полнотелых керамических кирпичей. Кроме низко веса, подобные кирпичи обладают низкой степенью теплопроводности. Из такого материала обычно строят малоэтажные дома и перегородки в жилых и промышленных объектах.

керамический кирпич плюсы и минусы

Какие преимущества имеет керамический кирпич

Возможно, многие люди знакомы с плюсами и минусами таких изделий. Однако в этой статье мы перечислим самые важные качества этого строительного материала.

  1. Итак, керамический кирпич отличается продолжительным сроком эксплуатации.
  2. Керамический кирпич выпускается в широкой цветовой гамме.
  3. Керамический кирпич может иметь разнообразные размеры.
  4. Керамический кирпич отличается простотой в укладке.
  5. Керамический кирпич — это абсолютно безопасный материал, который создается из экологически чистых материалов.
  6. Керамический кирпич обладает высоким уровнем звукоизоляции.
  7. Керамический кирпич способен продолжительное время сохранять тепло.
  8. Керамический кирпич имеет очень приятную цену, которая гораздо ниже цены на клинкерные изделия.

керамический кирпич плюсы и минусы

Какие недостатки имеет керамический кирпич

Как и любой строительный материал, керамический кирпич имеет тоже свои недостатки.

  1. Если изделия некачественные, то у них наблюдается нарушения в геометрии.
  2. Если использовать некачественные керамические кирпичи при строительстве, то можно столкнуться с разрушением всего здания.
  3. Керамические кирпичи имеют небольшой процент водопоглощения. Отсюда следует, что от замерзания/размораживания кирпичи теряют свои свойства.
  4. Керамический кирпич подвержен химической коррозии, которая проявляется в виде высолов белых налетов.

В общем, если посмотреть на недостатки материала, то можно заметить то, что они проявляются в основном у некачественных изделий. Поэтому вам для строительства стоит выбирать качественные экземпляры, которые прослужат верой и правдой не одно десятилетие.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector